飛機在空氣中飛行時,前端對空氣產生擾動,這個擾動以擾動波的形式以音速傳播,當飛機的速度小于音速時,擾動波的傳播速度大于飛機前進速度,因此它的傳播方式為四面八方;而當物體以音速或超音速運動時,擾動波的傳播速度等于或小于飛機前進速度,這樣,后續時間的擾動就會同已有的擾動波疊加在一起,形成較強的波,空氣遭到強烈的壓縮、而形成了激波。
空氣在通過激波時,受到薄薄一層稠密空氣的阻滯,使得氣流速度急驟降低,由阻滯產生的熱量來不及散布,于是加熱了空氣。加熱所需的能量由消耗的動能而來。在這里,能量發生了轉化--由動能變為熱能。動能的消耗表示產生了一種特別的阻力。這一阻力由于隨激波的形成而來,所以就叫做"波阻"。從能量的觀點來看,波阻就是這樣產生的。
從機翼上壓強分布的觀點來看,波阻產生的情況大致如下;根據對機翼所作的實驗,在超音速飛行時,機翼上的壓強分布如圖所示。在亞音速飛行情況下,機翼上只有摩擦阻力、壓差阻力和誘導阻力。
在超音速飛行情況下,壓強分布變化非常大,大稀薄度向后遠遠地移動到尾部,而且向后傾斜得很厲害,同時它的絕對值也有增加。因此,如果不考慮機翼頭部壓強的升高,那么壓強分布沿與飛行相反方向的合力,急劇增大,使得整個機翼的總阻力相應有很大的增加。這附加部分的阻力就是波阻。由于它來自機翼前后的壓力差,所以波阻實際上是一種壓差阻力。
阻力對于飛機的飛行性能有很大的影響,特別是在高速飛行時,激波和波阻的產生,對飛機的飛行性能的影響更大。這是因為波阻的數值很大,能夠消耗發動機一大部分動力。
正激波的波阻要比斜激波大,因為在正激波下,空氣被壓縮得很厲害,激波后的空氣壓強和密度上升的高,激波的強度大,當超音速氣流通過時,空氣微團受到的阻滯強烈,速度大大降低,動能消耗很大,這表明產生的波阻很大;相反的,斜激波對氣流的阻滯較小,氣流速度降低不多,動能的消耗也較小,因而波阻也較小。斜激波傾斜的越厲害,波阻就越小。