首页「天富注册」平台登陆
当前日期时间
公司:天富注册新能源科技有限公司
电 话:400-822-5216
联系人:张骏捷
网址:www.xazmhbgc.com
邮 箱:7535077@qq.com
地 址:贵州省贵阳市天富新能源科技
生物质能源转化技术与应用Ⅰ
作者:an888    发布于:2024-06-14 19:30    文字:【】【】【

  生物质能源转化技术与应用()摘要:生物质能源是唯一可再生、可替代化石能源转化成液态和气态燃料以及其它化工原料或者产品的碳资源。随着化石能源的枯竭和人类对全球性环境问题的关注,生物质能替代化石能源利用的研究和开发,已成为国内外众多学者研究和关注的热点。本文综述了我国年可获得生物质资源量达到3.14亿吨煤当量,其中秸秆和薪材分别占54%和36%;现有180多亿吨林木生物质资源量、8~10亿吨可获得量和3亿吨可作为能源的利用量。生物质能转化利用的主要途径是:热化学高效转化利用的热解气化发电(供热、供气)、快速热解制备液体燃料和生物质气化合成液体燃料,以及生物化学转化技术等。同时,论述了目前已经进行的生物质研究开发技术和产业化利用进展。石油、煤炭和天然气等化石能源的不可再生性,以及使用过程所带来的环境恶化效应,迫使人们不得不重新审视和调整长期以来实行的化石能源发展战略。可再生的生物质能源成为人类社会21世纪能源研究发展的热点。我国中长期科技发展规划已把生物质资源的开发利用作为可持续发展的战略重点。2006日开始正式实施的我国第一部《可再生能源促进法》,大大地推动包括生物质能源在内的可再生能源的开发利用。本文综述林业生物质能资源和利用技术现状。生物质能源的地位生物质是直接或间接地来源于植物光合作用而产生的各种有机体,包括动植物和微生物。生物质能是绿色植物通过叶绿素将太阳能转化为化学能而蕴藏在生物质内部的一种能量形式,是一种以生物质为载体的能量,是可再生的绿色能源。在各种可再生能源中,生物质能源是唯一可再生、可替代化石能源转化成液态和气态燃料以及其它化工原料或者产品的碳资源。生物质能源通常是指:各种速生的能源林、薪炭林、经济林、用材林、灌木林,木材及森林工业废弃物;农业生产和加工剩余物;水生植物;油料植物;城市和工业有机废弃物;动物粪便等。生物质能源的应用研究开发几经波折,在第二次世界大战前后,欧洲的木质能源应用研究达到高峰,然后随着石油化工和煤化工的发展,生物质能源的应用逐渐趋于低谷。到20世纪70年代由于中东战争引发的全球性能源危机以来,可再生能源包括木质能源在内的开发利用研究,重新引起了人们的重视。1.1具有丰富的可持续发展的生物质能资源我国具有丰富的生物质能资源,主要来自于农林资源。理论生物质能资源约有50亿吨煤当量(tce),是我国目前总能耗的4倍左右。根据资料介绍,目前我国年可获得生物质资源量达到3.14tce,其中秸秆和薪材分别占54%和36%,见表1。以国家发展和改革委员会所作的粮食生产预测、我国畜牧业发展规划和林业发展规划、我国主要能源作物亩产水平和我国土地资源面积等为参照进行预测,到2050年,年可获得的生物质能资源潜力有9.04tce增加了hmsup2/sup宜林地和荒沙荒地,还有亿hmsup2/sup不适宜发展农业的边际土地资源,充分开发利用我国的土地资源,在不与农林作物(粮油棉)等争土地的条件下,发展林木生物质能源潜力巨大。现有农业生物质能种类分布见图1。林业生物质能的种类和可获得资源量,根据调查和分析测算见表2。其中林业生物质不仅仅品质高于农业生物质,而且具有巨大的发展空间。1.2生物质能源利用与环境友好能源是现代社会赖以生存和国民经济发展的基础。作为能源支柱的化石能源已对人类的生存环境带来严重的污染,石油、煤、天然气等化石能源是不可再生的,资源是有限的,正面临着逐渐枯竭的危险。20世纪80年代后期,由于燃烧产生大量的SOsub2/sub、COsub2/sub等气体,严重污染环境。大气中90%以上的污染物NOsubX/sub和SOsubX/sub以及90%以上的酸雨都来自于煤和石油的使用,温室效应气体COsub2/sub的排放已造成对生态环境的威胁。如果不采取有效措施控制二氧化碳的排放,全球持续变暖将会给人类赖依生存的地球带来灾难性的后果。使用生物质能,几乎不产生污染,使用过程中几乎没有SOsub2/sub产生,产生的COsub2/sub气体又为生物质的生长所吸收,形成所谓的二氧化碳平衡循环。我国是一个人口大国,又是一个经济迅速发展的国家,随着经济的发展,生活水平的提高,环境保护意识的加强,化石能源逐渐减少,对包括生物质能源在内的可再生资源的合理、高效地开发利用,必然愈来愈受到人们的重视。有关专家估计,生物质能源极有可能成为未来可持续能源系统的组成部分,到21世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。生物质能源利用技术和化石燃料的利用方式具有很大的兹容性,以生物质作为原料经过能量转换制造高品位的气体燃料和液体燃料,不但可以弥补化石燃料的不足,缓解过分依赖大量进口石油的被动局面,实现我国能源安全战略,而且达到保护生态环境的目的。因此改变能源生产和消费方式,开发利用生物质等可再生的清洁能源资源对建立可持续的能源系统,促进国民经济发展和环境保护具有重大意义。生物质能源主要转化技术各种生物质能源在利用时均需转化,由于不同生物质资源在物理化学方面的差异,转化途径各不相同,除人畜粪便的厌氧处理以及油料与含糖作物的直接提取外,多数生物质能要经过转化过程。生物质能源转换技术的研究开发工作主要包括物理、化学和生物等三大类转换技术,将可再生的生物质能源转化为洁净的高品位气体或者液体燃料,作为化石燃料的替代能源用于电力、交通运输、城市煤气等方面。生物质能源转换的方式,涉及到固化、直接燃烧、气化、液化和热解等技术。其中,直接燃烧是生物质能源最早获得应用的方式。生物质的热解气化是热化学转化中最主要的一种方式。生物质能源转换技术和产品如图2所示。2.1物理转换技术(压缩成型技术)压缩成型就是将松散的生物质原料,经过高压/高温压缩成一定形状且密度大的成型物,以实现减少运输费用、提高使用设备的有效容积燃烧强度、提高转换利用的热效率。日本1948年申报了利用木屑为原料生产棒状成型燃料的第一个专利,并且实现了棒状成型机的商品化;20世纪70年代初,美国研究开发了内压滚筒式颗粒成型机,并在国内形成大量生产,年生产颗粒成型燃料达80万吨以上。日本、瑞士、瑞典等发达国家也先后研究开发了颗粒压缩成型燃料技术,主要作为家用燃料和工业发电的原料。中国的成型燃料生产始于20世纪80年代,现在已经开发的技术主要是棒状和颗粒状成型燃料,比较成熟的技术是棒状及其炭化成型炭,产品出口到日本、韩国等地。颗粒成型燃料技术和设备的研究开发也已经引起了人们的重视,但是技术还需要进一步成熟。2.2化学转换技术生物质化学转换可分为传统化学转换和热化学转换。生物质热化学转换法,可获得木炭、焦油和可燃气体等品位高的能源产品,该方法又按其热加工的方法不同,分为高温干馏、热解、高压液化、快速热解、高温气化等方法。在热化学转化方面,大体上可分为下述几方面:一是直接燃烧,二是气化提供燃料气或用于发电,三是液化制取液体产品,这种产品便于储存和输送,可部分替代燃料油,还可进一步生产其它化学品。 2.2.1 气化生物质气化是指固体物质在高温条件下,与气化剂反应得到小分子可燃气体的 过程,气化主要反应是生物质碳与气体之间的非均相反应和气体之间的均相反应。通常所 说的气化,还包括生物质的热解过程。热解气化原理见图3 所示。所用气化剂不同(如空 气煤气、水煤气、混合煤气以及蒸汽氧气煤气等),得到的气体燃料组分也不同,产出的 气体主要有 CO、Hsub2/sub、COsub2/sub、CHsub4/sub、Nsub2/sub 以及Csubn/subHsubm/sub等烷烃类碳氢化合物。生物质的气化利用又可分为 气化供气/供热/发电、制氢和间接合成,生物质转换得到的合成气(CO+Hsub2/sub), 经催化转化制造洁净燃料汽油和柴油以及含氧有机物如甲醇和二甲醚等。生物质的气化制 氢是指把气化产品中的氢气分离并提纯,所得产品可作燃料电池用氢。 生物质气化技术已有100 多年的历史。最初的气化反应器产生于1883 年,它以木炭为原 料,气化后的燃气驱动内燃机,推动早期的汽车或农业排灌机械。第二次世界大战期间, 是生物质气化技术的鼎盛时期。 2.2.2 液化液化是指通过化学方式将生物质转换成液体产品的过程。液化技术主要有直接 液化和间接液化两类。直接液化是把生物质放在高压设备中,添加适宜的催化剂,在一定 的工艺条件下反应,制成液化油,作为汽车用燃料或进一步分离加工成化工产品。间接液 化就是把生物质气化成气体后,再进一步进行催化合成反应制成液体产品。这类技术是生 物质的研究热点之一。生物质中的氧含量高,有利于合成气(CO+Hsub2/sub)的生成, 其中的N、S 含量和等离子体气化气体中几乎无COsub2/sub、CHsub4/sub等杂 质存在,极大地降低了气体精制费用,为制取合成气提供了有利条件。我国虽然对费托合 成进行了多年研究,但至今未工业化。催化剂的开发及反应器系统的研究与开发是进一步 放大的关键,特别是针对生物质合成气的特点(如气体组成,焦油等),必须研究反应机理, 对已有的技术及催化剂进行改造,提高产品品质及过程的经济性,才有望使之工业化。 2.2.3 热解生物质在隔绝或少量供给氧气的条件下,利用热能切断生物质大分子中碳氢化 合物的化学键,使之转化为小分子物质的加热分解过程通常称之为热解,这种热解过程所 得产品主要有气体、液体、固体三类(产品产品比例根据不同的工艺条件而发生变化),如 所示。按照升温速率又分为低温慢速热解和快速热解。一般在 400以下,主要得到焦炭(30%); 国外研究开发了快速热解技术,即在 500,高加热速率(1000/s),短停留时间的瞬时 裂解,制取液体燃料油。液化油得率以干物质计,可高达70%以上,液化油的热值为 1.7×10sup4/supkJ/kg,是一种很有开发前景的生物质应用技术。快速裂解条 件比较难控制,条件控制不好对产率影响较大。生物油是一种液体产品,有高的氧含量及 低的氢碳比,由于生物油的独特性质,导致其不稳定,尤其是它的热不稳定性。需要经催 化加氢、催化裂解等处理才能用作燃料。快速裂解技术自20 世纪80 年代提出以来得到 了迅速的发展。现已发展了多种工艺,加拿大Watedoo 大学流化床反应器、荷兰Twente 大学旋转锥反应器、瑞士自由降落反应器等均达到最大限度地增加液体产品收率的目的。 我国仍十五计划开始快速热解的相关研究工作,目前仌然处于实验室和中间实验研究阶 2.3生物化学转化技术 2.3.1 生物质水解技术生物质制取乙醇最主要的原料是:糖液、淀粉和木质纤维素等。生物 技术制备乙醇的生产过程为先将生物质碾碎,通过化学水解(一般为硫酸)或者催化酶作用 将淀粉或者纤维素、半纤维素转化为多糖,再用发酵剂将糖转化为乙醇,得到的乙醇体积 分数较低(5%~15%)的产品,蒸馏除去水分和其他一些杂质,最后浓缩的乙醇(一步蒸馏 过程可得到体积分数为 95%的乙醇)冷凝得到液体。木质纤维素生物质(木材和草)的转化 较为复杂,其预处理费用昂贵,需将纤维素经过几种酸的水解才能转化为糖,然后再经过 发酵生产乙醇。这种化学水解转化技术能耗高,生产过程污染严重、成本高,缺乏经济竞 争力。目前正开发用催化酶法水解,但是因为酶的成本高,尚处于研究阶段。 2.3.2 厌氧发酵技术厌氧发酵是指在隔绝氧气的情况下,通过细菌作用进行生物质的分解。 将有机废水(如制药厂废水、人畜粪便等)置于厌氧发酵罐(反应器、沼气池)内,先由厌氧 发酵细菌将复杂的有机物水解并发酵为有机酸、醇、Hsub2/sub和 COsub2/sub 等产物,然后由产氢产乙酸菌将有机酸和醇类代谢为乙酸和氢,最后由产 CHsub4/sub天富用户注册,生物质能源转化技术与应用Ⅰ

相关推荐: